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Abstract

The unsteady mixed convection boundary layer flow near the region of a stagnation point on a vertical surface

embedded in a Darcian fluid-saturated porous medium is studied in this paper. It is assumed that the unsteadiness is

caused by the impulsive motion of the free stream velocity and by sudden increase in the surface temperature. The

problem is reduced to a single partial differential equation, which is solved numerically using the Keller–Box method.

The small time (initial unsteady flow) as well as the large time (final steady state flow) solutions are also included in the

analysis. The asymptotic behavior of the solution for small and large values of the mixed convection parameter k is also

examined when the flow becomes steady. It is shown that there is a smooth transition from the small time solution to

the large time solution. It is also shown that there is an excellent agreement between the numerical and analytical

solutions. The uniqueness of this problem lies on the fact that we have been able to show that in the case of steady state

flow, solutions are possible for all values of k > 0 (assisting flow) and for k < 0 (opposing flow), solutions are possible

only for a limited range of k.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Convective heat transfer in fluid-saturated porous

media has received much attention in recent years be-

cause of its important applications both in technology

and geothermal energy recovery. These applications in-

clude oil recovery, food processing, fiber and granular

insulation, design of packed bed reactors, the dispersion

of chemical contaminants in various processes in the

chemical industry and in the environment, to name but a

few. Numerous authors cite a wide variety of these

applications involving convective transport phenomena.
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Several others investigate the intricate nature of solution

structure from a fundamental point of view in idealizing

settings. Detailed reviews of the subject including

exhaustive lists of references, were recently performed

by Ingham and Pop [1], Nield and Bejan [2], Vafai [3],

Pop and Ingham [4], and Bejan and Kraus [5].

Most of the recent research on convective flow in

porous media has been directed to the problems of steady

free and mixed convection flows over heated bodies

embedded in fluid-saturated porous media. However,

unsteady convective boundary layer flow problems have

not, so far, received as much attention. Perhaps, the first

study on unsteady boundary layer flow on flat surfaces in

porous media was made by Johnson and Cheng [6] who

found similarity solutions for certain variations of the

wall temperature. The more common cases, in general,

involve transient convection, which is non-similar and
ed.
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Nomenclature

Cf skin friction coefficient

f reduced stream function

g acceleration due to gravity

K permeability of the porous medium

L characteristic length

Nu Nusselt number

Pe P�eclet number

Pr Prandtl number

Ra Rayleigh number

Re Reynolds number

t time

T fluid temperature

u, v velocity components along x- and y-axes,
respectively

Ue characteristic velocity

x, y Cartesian coordinates along and normal to

the surface, respectively

Greek symbols

am effective thermal diffusivity

b coefficient of thermal expansion

g pseudo-similarity variable

h non-dimensional fluid temperature

s non-dimensional time

k mixed convection parameter

m kinematic viscosity

n non-dimensional transformed variable

r ratio of composite material heat capacity to

convective fluid heat capacity

Subscripts

e, w, 1 conditions at the edge of the boundary layer,

at the surface, and in the free stream,

respectively

Superscript
0 differentiation with respect to g or �g
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hence, more complicated mathematically. The interested

reader can find an excellent collection of papers on un-

steady convective flow problems over heated bodies

embedded in a fluid-saturated porous medium in the

review papers by Pop et al. [7], Bradean et al. [8] and in

the book by Pop and Ingham [4].

Motivation to study mixed convection in porous

media comes from the need to characterize the convec-

tive transport processes around deep geological reposi-

tory for the disposal of high-level nuclear waste, e.g.

spent fuel rods from nuclear reactors (see [9]). Presently

proposed repositories would cover an area of up to 5

km2 and 600 m below ground level. The parameters

which are expected to affect the temperature field around

a repository include the natural stratigraphy of the site,

groundwater flow caused by the hydrostatic head of the

water table, layout of tunnel and rooms, and the vari-

ation in waste heat generation with time (see [9]).

Cheng [10] seems to be the first to consider the

problem of steady mixed convection in porous media

along inclined surfaces. Both aiding (assisting) and

opposing flows were considered. Assuming a power law

variation of the wall temperature (Tw ¼ T1 � Axm, where
A and m are constants), similarity solutions were ob-

tained for two cases: (i) a uniform flow along a vertical

isothermal flat plate (m ¼ 0); and (ii) an accelerating

flow over a 45� inclined flat plate of constant heat flux

(m ¼ 1=3). The heat transfer rate is found to approach

asymptotically the forced and free convection limits as

the value of the governing mixed convection parameter
Ra=Pe approaches zero and infinity, respectively. Merkin

[11] has studied later the steady mixed convection

boundary layer flow adjacent to a vertical, uniform heat

flux flat plate embedded in a porous medium. As pointed

out by Cheng [10], a similarity solution does not exist in

this case so that Merkin [11] used two different coordi-

nates perturbations for small and large downstream

distances. These expansions were then matched for

intermediate downstream distances using numerical

integration of the governing equations. Joshi and Geb-

hart [12] extended Merkin’s analysis by using the

method of matched asymptotic expansions. It was

shown that the first correction to the boundary layer

theory (neglected by Merkin [11]) occurs at the same

level as the second correction due to mixed convection.

Therefore, both of these effects must be included in a

physically consistent analysis.

A review of the literature shows that very little re-

search has been reported on unsteady mixed convection

flow in porous media. Harris et al. [13] have performed

an analysis of the unsteady mixed convection boundary

layer flow from a vertical flat plate embedded in a por-

ous medium. A complete analysis was made at the initial

unsteady flow (t ¼ 0) and the steady state flow at large

times (t ! 1), and a series solution valid at small times

obtained using semi-similar coordinates originated by

Smith [14].

The purpose of this paper is to study the unsteady

mixed convection flow near the stagnation point on a

heated vertical flat plate embedded in a fluid-saturated
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Fig. 1. Physical model and coordinate system.

R. Nazar et al. / International Journal of Heat and Mass Transfer 47 (2004) 2681–2688 2683
porous medium, in the presence of buoyancy forces. It is

assumed that the unsteadiness is caused by the impulsive

start in motion of the free stream flow and by the sudden

increase or sudden decrease in the surface temperature,

which is considered to vary linearly with the distance

along the plate. The governing Darcy and energy

equations are transformed using self-similar coordinates

found by Williams and Rhyne [15] for the case of the

boundary layer development on a wedge impulsively set

into motion in a viscous and incompressible fluid. This is

the method of semi-similar solutions, in which the

number of independent variables is reduced from three

to two by an appropriate scaling. The scale of time has

been selected in such a manner that the traditional

infinite region is transformed to a finite region, which

reduces the computational time considered. Thus, the

transformed Darcy and energy boundary layer equa-

tions are solved numerically for the whole transient re-

gime using the Keller–Box method described by Cebeci

and Bradshaw [16], when the buoyancy parameter k is

positive (assisting flow) and negative (opposing flow).

Also, a closed form solution of these equations has been

shown to exist at the time s ¼ 0 (initial unsteady flow),

s ! 1 (final steady state flow) and for small times s
(non-dimensional). Particular cases of the present results

are compared with those of Merkin [11] and Crane [17].

The results are believed to be important to future the-

oretical studies of convective flow problems in porous

media. It is of some importance to mention at this place

that mixed convection in stagnation flows becomes

important when the buoyancy forces, due to the tem-

perature difference between the wall and the free stream,

become high and thereby modify the flow and thermal

fields significantly. In such situations, the flow and

thermal fields are no longer symmetric with respect to

the stagnation line [18].
2. Basic equations

Let us suppose that this investigation is appropriate

to the mixed convection flow at the two-dimensional

stagnation point on a double-infinite vertical flat plate,

which is embedded in a fluid-saturated porous medium

of constant ambient temperature T1. It is assumed that

at time t ¼ 0, the external flow starts impulsively in

motion from rest towards the plate with a steady

velocity ueðxÞ. The flow configuration is shown sche-

matically in Fig. 1 together with the corresponding

Cartesian coordinates (x; y) in vertical and horizontal

directions, respectively, with the positive y-axis pointing
towards the porous medium (external flow). Either

heating or cooling of the plate is assumed to begin

simultaneously with the motion of the external stream.

In particular, it is assumed that the temperature of the

plate TwðxÞ varies linearly with the distance x along the
plate. Therefore, the mixed convection flow is symmetric

about the centreline plane, which contains the stagna-

tion point. Thus, the plate temperature and the condi-

tion far from the plate is assumed to be given by

TwðxÞ ¼ T1 þ sT0ðx=LÞ; ueðxÞ ¼ Ueðx=LÞ ð1Þ

where L is a characteristic length, T0 > 0 is a character-

istic temperature and s ¼ �1. The case s ¼ þ1 corre-

sponds to the situation when TwðxÞ increases (linearly)

from x ¼ �1 to x ¼ þ1, while s ¼ �1 corresponds to

the case when TwðxÞ decreases (linearly) from x ¼ þ1 to

x ¼ �1, respectively. In the first case (s ¼ þ1), the

buoyancy force accelerates the motion in both, upper

half plane (up flow) and lower half plane (down flow).

Both of these flows are assisting flows and are equivalent

at x ¼ þ1. On the other hand, in the second case

(s ¼ �1), the buoyancy force decelerates the flow both in

the upper half plane and in the lower half plane. Both of

these flows are opposing flows and are equivalent at

x ¼ �1. Since the present flow model is symmetric,

it is sufficed to consider the flow only in the upper half

plane for s ¼ �1. It is assumed that the convective fluid

and the porous medium are everywhere in the local

thermodynamic equilibrium, the temperature of the fluid

is everywhere below the boiling point and that the

properties of the fluid and the porous medium such as

viscosity, thermal conductivity, thermal expansion co-

efficient, specific heat and permeability are constants.

Under these assumptions along with the Darcy–Bous-

sinesq approximation, the unsteady boundary layer

equations governing this mixed convection flow are

given by (see [4])

ou
ox

þ ov
oy

¼ 0 ð2Þ

u ¼ ueðxÞ þ
gKb
m

ðT � T1Þ ð3Þ
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oT
ot

þ u
oT
ox

þ v
oT
oy

¼ am
o2T
oy2

ð4Þ

subject to the initial and boundary conditions

t < 0 : uðx; yÞ ¼ vðx; yÞ ¼ 0; T ðx; yÞ ¼ T1 any x; y

tP 0 : vðx; 0Þ ¼ 0; T ðx; 0Þ ¼ TwðxÞ � T1 ¼ sT0ðx=LÞ;
xP 0

uðx;1Þ ¼ ueðxÞ ¼ ðUe=LÞx; xP 0

ð5Þ

where u and v are the velocity components along x- and
y-axes, T is the fluid temperature, g is the gravitational

acceleration, K is the permeability of the porous med-

ium, am is the effective thermal diffusivity of the porous

medium, b is thermal expansion coefficient, m is the

kinematic viscosity and r is the ratio of composite

material heat capacity to convective fluid heat capacity.

Following Williams and Rhyne [15], and Seshadri

et al. [19], we introduce the following new variables

g ¼ ðUe=LamÞ1=2yn�1=2; n ¼ 1� expð�sÞ;
s ¼ ðUe=LrÞt

uðx; y; tÞ ¼ ðUex=LÞf 0ðn; gÞ; v ¼ �ðUeam=LÞ1=2n1=2f ðn; gÞ
T ðx; y; tÞ ¼ T1 þ sT0ðx=LÞhðn; gÞ

ð6Þ
for 06 n6 1. Using these transformations, Eqs. (2)–(4)

become

f 0 ¼ 1þ kh ð7Þ

h00 þ 1

2
gð1� nÞh0 þ nðf h0 � f 0hÞ ¼ nð1� nÞ oh

on
ð8Þ

for 06 n6 1. The boundary conditions (5) now become

f ðn; 0Þ ¼ 0; hðn; 0Þ ¼ 1; hðn; gÞ ! 0 as g ! 1
ð9Þ

for 06 n6 1. Here k (¼ constant) is the mixed convec-

tion parameter and is defined as

k ¼ s
Ra
Pe

; Ra ¼ gKbT0L
amm

; Pe ¼ UeL
am

ð10Þ

with Ra and Pe being the Rayleigh and P�eclet numbers,

respectively. It should be noted that k > 0 (s ¼ þ1)

corresponds to buoyancy assisting flow and k < 0 (s ¼
�1) corresponds to buoyancy opposing flow. Thus, Eqs.

(7) and (8) can be combined to give the following

equation:

f 000 � 1

2
gð1� nÞf 00 þ nðff 00 þ f 0 � f 02Þ ¼ nð1� nÞ of

0

on

ð11Þ

for 06 n6 1, and is subject to the boundary conditions

f ðn; 0Þ ¼ 0; f 0ðn; 0Þ ¼ 1þ k; f 0ðn;1Þ ¼ 1 ð12Þ
for 06 n6 1. We notice that Eq. (11) subjected to the

boundary conditions (12) is a non-linear parabolic par-

tial differential equation, but for n ¼ 0 (s ¼ 0) and n ¼ 1

(s ! 1), it reduces to ordinary differential equations.

The physical parameters of interest are the skin friction

coefficient Cf , and the Nusselt number Nu, which are

defined as

Cf ¼
2lðx=LÞ
qu2eðxÞ

ou
oy

� �
y¼0

;

Nu ¼ L
ðTw � T1Þ

�
� oT

oy

�
y¼0

ð13Þ

Using variables (6), we get

Cf=ðPr=ReÞ1=2 ¼ 2n�1=2f 00ðn; 0Þ;
Nu=ðPrReÞ1=2 ¼ n�1=2½�h0ðn; 0Þ� ð14Þ

or

Nu=ðPrReÞ1=2 ¼ 1

k
n�1=2½�f 00ðn; 0Þ� ð15Þ

where Pr ¼ m=am and Re ¼ UeL=m are the Prandtl and

Reynolds numbers, respectively.
3. Solution

The governing partial differential equation (11), and

the associated boundary conditions (12), permit separate

reductions to ordinary differential systems governing the

profiles of the non-dimensional velocity and temperature

functions in the initial unsteady state flow at n ¼ 0, final

steady state flow at large times given by n ¼ 1 and for

small times n or s.
Initial unsteady flow. This solution corresponds to

n ¼ 0 (s ¼ 0), where f ð0; gÞ ¼ F ðgÞ. In this case, Eq. (11)

can be reduced to

F 000 þ 1

2
gF 00 ¼ 0 ð16Þ

subject to the boundary conditions

F ð0Þ ¼ 0; F 0ð0Þ ¼ 1þ k; F 0ð0Þ ¼ 1 ð17Þ

The analytical solution of these equations is given by

F ¼ gþ k gerfcðg=2Þ
�

� 2ffiffiffi
p

p expð � g2=4Þ þ 2ffiffiffi
p

p
�

F 0 ¼ 1þ kerfcðg=2Þ
ð18Þ

where erfcðzÞ is the complementary error function which

is defined as

erfcðzÞ ¼ 2ffiffiffi
p

p
Z 1

g
e�z2 dz ð19Þ



R. Nazar et al. / International Journal of Heat and Mass Transfer 47 (2004) 2681–2688 2685
Solution (18) can then be used to calculate the local

Nusselt number in the initial unsteady state flow, namely

Nu=ðPrReÞ1=2 ¼ 1ffiffiffi
p

p n�1=2 ð20Þ

Final steady state flow. This solution corresponds to

n ¼ 1 ðs ! 1Þ, where f ð1; gÞ ¼ GðgÞ. Eq. (11) now be-

comes

G000 þ GG00 þ G0 � G02 ¼ 0 ð21Þ

subject to the boundary conditions

Gð0Þ ¼ 0; G0ð0Þ ¼ 1þ k; G0ð1Þ ¼ 1 ð22Þ

(i) Solution for small k. It is possible to obtain an

approximate solution of Eqs. (21) and (22) for small

values of k. In this case, we seek a power series solution

of these equations of the form

GðgÞ ¼ G0ðgÞ þ G1ðgÞkþ G2ðgÞk2 þ h:o:t: ð23Þ

which is valid for jkj � 1, where the functions G0, G1

and G2 are given by the following three sets of equations

G000
0 þ G0G00

0 þ G0
0 � G02

0 ¼ 0

G0ð0Þ ¼ 0; G0
0ð0Þ ¼ 1; G0

0ð1Þ ¼ 1;
ð24Þ

G000
1 þ G0G00

1 þ G0
1 � 2G0

0G
0
1 ¼ 0

G0ð0Þ ¼ 0; G0
1ð0Þ ¼ 1; G0

1ð1Þ ¼ 0;
ð25Þ

G000
2 þ G0G00

2 þ G0
2 � 2G0

0G
0
2 ¼ G02

1 � G1G00
1

G2ð0Þ ¼ G0
2ð0Þ ¼ 0; G0

2ð1Þ ¼ 0
ð26Þ

Eqs. (24)–(26) have the analytical solutions

G0 ¼ g

G0
1 ¼ �g

ffiffiffi
p
2

r
erfcðg=

ffiffiffi
2

p
Þ þ e�g2=2

G0
2 ¼

ffiffiffi
p

p p
2

�
� 7

3

�
gffiffiffi
2

p erfcðg=
ffiffiffi
2

p
Þ

�
� 1ffiffiffi

p
p e�g2=2

�

þ p
4
ð3þ g2Þerfc2ðg=

ffiffiffi
2

p
Þ

� 5

6
ge�g2=2 erfcðg=

ffiffiffi
2

p
Þ � p

4
erfcðg=

ffiffiffi
2

p
Þ

� 7

3
e�g2 þ 8

3

ffiffiffi
p

p
gerfcðgÞ ð27Þ

Thus, we have

G00
0ð0Þ ¼ 0; G00

1ð0Þ ¼ �
ffiffiffi
p
2

r
¼ �1:2533;

G00
2ð0Þ ¼

ffiffiffi
p

p
ffiffiffi
2

p

4
p

 
þ 8

3
� 17

ffiffiffi
2

p

6

!
¼ �0:4068 ð28Þ

and

G00ð0Þ ¼ �1:2533k� 0:4068k2 þ h:o:t: ð29Þ

for jkj � 1.
(ii) Solution for large k. In this case, we take

GðgÞ ¼ k1=2Gð�gÞ; �g ¼ k1=2g ð30Þ

so that Eq. (21) becomes

G
000 þ GG

00 � G
02 þ k�1G

0 ¼ 0 ð31Þ

subject to

Gð0Þ ¼ 0; G
0ð0Þ ¼ 1þ k�1; G

0ð1Þ ¼ k�1 ð32Þ

where primes now denote differentiation with respect

to �g. We look for a solution of Eqs. (31) and (32) of

the form

Gð�gÞ ¼ G0ð�gÞ þ G1ð�gÞk�1 þ G2ð�gÞk�2 þ h:o:t: ð33Þ

which is valid for jkj � 1. The solution for G0 is given

by equation

G
000
0 þ G0G

00
0 � G

02
0 ¼ 0 ð34Þ

subject to the boundary conditions

G0ð0Þ ¼ 0; G
0
0ð0Þ ¼ 1; G

0
0ð1Þ ¼ 0 ð35Þ

These equations describe the flow due to a stretching

wall, first studied by Crane [17], and have the solution

G0 ¼ 1� e��g ð36Þ

The functions G1 and G2 are determined numerically

from the equations

G
000
1 þ G

00
1 � e��g G

00
1

�
þ 2G

0
1 þ G1 � 1

�
¼ 0

G1ð0Þ; G
0
1ð0Þ ¼ 1; G

0
1ð1Þ ¼ 1;

ð37Þ

G
000
2 þ G

00
2 � e��g G

00
2

�
þ 2G

0
2 þ G2

�
¼ G

02
1 � G1G

00
1 � G

0
1

G2ð0Þ ¼ G
0
2ð0Þ ¼ 0; G

0
2ð1Þ ¼ 0

ð38Þ

Thus, we have

G00ð0Þ ¼ k3=2 G
00
0ð0Þ

�
þ G

00
1ð0Þk

�1 þ G
00
2ð0Þk

�2 þ h:o:t:
�

¼ k3=2
�
� 1� 0:8160k�1 þ 0:4605k�2 þ h:o:t:

	
ð39Þ

for jkj � 1.

Solution for small n and s. We assume now that a

solution of Eq. (11) for small values of n (�1) is of the

form

f ¼ f0ðgÞ þ f1ðgÞnþ f2ðgÞn2 þ h:o:t: ð40Þ

where f0 is given by expression (18) and the functions

f1 and f2 are determined from the equations
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f 000
1 þ 1

2
gf 00

1 � f 0
1 ¼

1

2
gf 00

0 � f0f 00
0 � f 0

0 þ f 02
0

f1ð0Þ ¼ f 0
1ð0Þ ¼ 0; f 0

1ð1Þ ¼ 0;
ð41Þ

f 000
2 þ 1

2
gf 00

2 � f 0
2 ¼

1

2
gf 00

1 þ 2f 0
0f

0
1 � f1f 00

0 � f0f 00
1 � 2f 0

1

f2ð0Þ ¼ f 0
2ð0Þ ¼ 0; f 0

2ð1Þ ¼ 0

ð42Þ

The solution of Eq. (41) is

f 0
1 ¼ k 1

�
þ k
2
� 2k
3p

�
1

��
þ 1

2
g2
�
erfcðg=2Þ

� 1ffiffiffi
p

p ge�g2=4

�
þ k2

2

�
� 1þ 1

2
g2
�
erfc2ðg=2Þ

� k 1

�
þ 3k
2
ffiffiffi
p

p ge�g2=4

�
erfcðg=2Þ þ 2

p
k2e�g2=2

� k
4
ffiffiffi
p

p ge�g2=4 � 4k2

3p
e�g2=4 ð43Þ

with

f 00
1 ð0Þ ¼

kffiffiffi
p

p 4k
3p

�
� 5þ 6k

4

�
ð44Þ

while Eq. (42) can be easily solved numerically.

Thus, the local Nusselt number given by expression

(15) becomes

Nu=ðPrReÞ1=2 ¼ 1

k
n�1=2½�f 00ðn; 0Þ�

¼ � 1

k
n�1=2 f 00

0 ð0Þ



þ f 00
1 ð0Þn

þ f 00
2 ð0Þn

2 þ h:o:t:
�

¼ 1ffiffiffi
p

p n�1=2

�
� 4k

3p

�
� 5þ 6k

4

�
n1=2

þ h:o:t:

�
ð45Þ

for n and s small (�1), where

n ¼ s� 1

2
s2 þ 1

6
s3 þ h:o:t: ð46Þ
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Fig. 2. Variation of the reduced skin friction G00ð0Þ with k
(small) for the final steady state flow (n ¼ 1).
4. Results and discussion

In order to determine the evolution of the boundary

layer, the governing partial differential equation (11)

subject to the boundary conditions (12) has been solved

numerically using the Keller–Box method, as described

by Cebeci and Bradshaw [16]. The computation starts

with the initial analytical solution (18) at n ¼ 0 corre-

sponding to s ¼ 0 and proceed up to the steady state

solution at n ¼ 1 corresponding to s ! 1. The solution

of the ordinary differential equations (21) and (22), which
govern the solution behaviour for the final steady state

flow at n ¼ 1 for all values of k, and the solution of Eqs.

(37) and (38), which govern the solution behaviour for

the final steady state flow when k � 1, have been ob-

tained using the Keller–Box method. It is found that for

k > 0 (assisting flow), solutions of Eqs. (21) and (22) can

be obtained for all k, while for k < 0 (opposing flow)

these equations have solutions only in the range of

kP k0 ¼ �1:4175. However, for k in the range of

k0 < k < �1, the solution is not unique, there being two

solutions G1ðgÞ and G2ðgÞ for a given k. One solution

continuing from the lower stagnation point solution, and

the other is such that G00ð0Þ ! G� (<0) as k ! �1, where

the exact value of G� cannot be determined. This can be

seen from Fig. 2, where G00ð0Þ is plotted as a function of

k. The values of G00
1ð0Þ and G00

2ð0Þ are given in Table 1 for

k in the range of �1:4176 k6 � 1. It is seen that these

dual solutions have G00
2ð0Þ6G00

1ð0Þ for a given value of k
in the range of �1:4176 k6 � 1. It is worth mentioning

that such dual solutions were first observed in porous

media by Merkin [11] for the problem of mixed convec-

tion boundary layer flow on a vertical surface embedded

in a fluid-saturated porous medium. Fig. 2 also demon-

strates that the expression (29) provides a very good

approximation to the heat transfer for small values of k
(�1). Further, Fig. 3 illustrates the behaviour of the

numerical solution G00ð0Þ of Eq. (21) at large values of k
(�1). The asymptotic solutions, given by Eqs. (29) and

(39) are also included in this figure. It is seen that the

function G00ð0Þ given by (39) provides an asymptote

to which the wall heat transfer tends to as k ! 1.

Fig. 4 illustrates the variation of the initial unsteady

velocity profiles F 0ðgÞ at n ¼ 0 for some values of k. It is
seen that we have, (i) for k in the range of �16 k < 0,

the fluid velocity reduces as we approach the stagnation

point region and is lower than the free stream flow; (ii) at



Table 1

Values of G00ð0Þ for �1:4175 < k6 � 1

k G00
1ð0Þ G00

2ð0Þ
)1.00 0.7315

)1.05 0.7286 )0.3007
)1.10 0.7190 )0.2933
)1.15 0.7019 )0.2791
)1.20 0.6757 )0.2561
)1.25 0.6381 )0.2216
)1.30 0.5858 )0.1711
)1.32 0.5585 )0.1446
)1.34 0.5302 )0.1131
)1.36 0.4930 )0.0747
)1.38 0.4580 )0.0259
)1.3885 0.4367 0.0000

)1.40 0.4040 0.0431

)1.41 0.3701 0.0966

)1.417 0.3420 0.1733
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k ¼ 0, pure forced convection; (iii) for k > 0, the

boundary layer thickness reduces as k increases since

within the boundary layer, the fluid velocity is becoming

increasingly greater than the free stream flow; (iv) as

k ! 1 pure free convection.

The variations of the local Nusselt number with n are

shown in Fig. 5, for a range of values of k. The final

steady state solution (n ¼ 1) given by Eqs. (21) and (22)

is also included here. It is also shown that the transition

from initial unsteady flow to the final steady flow takes

place smoothly. As k increases, the local Nusselt number

also increases.

Finally, Fig. 6 shows the variation of the local Nus-

selt number with s obtained by solving numerically Eqs.

(11) and (12) for different values of k. The small time

analytical solution as given by the series (45) is also in-

cluded in this figure. We can see that the agreement

between the numerical and analytical small s solution is

very good for small values of k, while for large values of
k this agreement is not good enough. However, the
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Fig. 5. Variation of the local Nusselt number with n for some

values of k.
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agreement between these two solutions can be improved

if more terms in the series (45) are considered.
5. Conclusions

The problem of unsteady mixed convection bound-

ary layer flow near the region of a stagnation point on a

heated vertical surface embedded in a fluid-saturated

porous medium is studied in this paper. This problem

occurs as the surface temperature of the plate, which is

assumed to vary linearly with the distance x along the

plate, is suddenly increased from that of the ambient

fluid and the impulsive motion of the free stream

velocity. Transient numerical solutions of the governing

equations have been presented over the range of physi-

cally relevant buoyancy parameter values, k > �1,

which model the cases in which the buoyancy forces are

both assisting and opposing the free stream.
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